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S u m m a r y  
We have investigated the influence of scanning rate on the form of DSC melting curves in 
semicrystalline polymers in which the melting point varies spatially within the sample. A 
numerical solution for the heat balance in the sample cell was used, taking into account heat 
absorbed during the melting transition for a given sample mass. The simulation accounted 
well for the effects of scanning rate on the shape of the DSC peak for polyoxymethylene 
samples crystallized above 150 ~ which were assumed to be free from effects arising from 
lamellar thickening during the scan. 

I n t r o d u c t i o n  
SemicrystaUine polymers differ from pure metals, for example, in that they do not normally 
exhibit a single well defined melting point, Tm. Tm depends instead on the crystallization 
conditions, which determine the lamellar thickness distribution. For a lamellar thickness 1, it 
is generally assumed that 

Tm = Tmo( 1 - 2(~e/IAh) . . .  (1), 

where Tmo is the equilibrium melting point, 5h is the heat of fusion per unit volume and (re 
is the fold surface energy. By using differential scanning calorimetry (DSC) to measure the 
distribution of Tm one might thus hope to obtain an idea of the distribution of 1 in a given 
sample (1-5). Apart from the tendency of semicrystalline polymers to recrystallize or 
undergo lamellar thickening during DSC heating scans, DSC output is sensitive to the test 
conditions and the calibration method employed. In what follows we present a method for 
evaluating the quantitative influence of variations in 1 by simulating the DSC melting peak 
for a given distribution of Tm. DSC data for polyoxymethylene (POM) are then briefly 
discussed in terms of the model. 

E x p e r i m e n t a l  
Calorimetry was carried out under dry N2 using the Perkin Elmer DSC7. The temperature 
scale was calibrated by extrapolating measured Tm for metal standards to zero scanning rate, 
and the heat transfer coefficient between the furnace and the sample holder, y, was obtained 
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from indium melting peaks as discussed elsewhere (6). The POM was a non-commercial 
grade with Mw = 42,000 and a polydispersity of  approximately 2, and contained an 
unspecified nucleating agent. Here we considered only crystallization temperatures, Tc, 
greater than 150 ~ (in POM, the position of the DSC melting peak is found to be 
independent of Tc for Tc < 150 ~ suggesting extensive lamellar thickening during the scan 
(7), an effect which we wished to avoid). Films of  about 70 lxm in thickness were moulded 
at 200 ~ using a miniature press. Discs with the same diameter as the DSC sample pans 
were cut from the films, remelted in the DSC at 185 ~ and crystallized isothermally at 153 
~ for 5 minutes. They were then held at 150 ~ for 1 minute and subjected to a constant 
positive heating rate scan up to 185 ~ 

Computation 
The DSC signal depends on the sample heat capacity, Cs, plus any additional heat evolved 
or absorbed during phase changes. After baseline subtraction, and assuming Cs to be 
independent of  T, a first approximation to the endotherm resulting from a constant positive 
heating rate scan of a crystalline sample is 

W(T) = msAH~ . . .  (2) 

(ms is the sample mass, AH is the enthalpy of crystallization per unit mass and ~(t) is the 
proportion of  the sample which has melted at time t). Given ~1, the probability density 
function (PDF) for 1, we can use equation (1) to derive a PDF for Tm, Om, such that 

T 

~(t) = TfoOm(O)dO 

for a test commencing at To, with T = To + t T. Hence from equation (2), 

. . .  ( 3 )  

W(T) = msAHTOm(T) . . .  (4), 

which implies that we can obtain d~m(T), and hence ~1(1), directly from W(T). 
In practice, there will be a temperature difference, AT, between the sample 

temperature, Ts, and the furnace temperature, Tf, and AT will depend on the heating rate. 
Since the DSC output is generally in the form of W tabulated.against Tfi one often uses 
some standard with a known Tm to estimate AT as a function of  Tf. When a measurement is 
subsequently made on a sample with an unknown Tm, Ts is then taken to be Tf + 
ATStandard. However, this requires the sample to have the same heat capacity as the 
standard (see equation (7) below), which is generally not true. More seriously, it takes no 
account of  the effect on Ts of  latent heat. To overcome these difficulties, we adapt the 
approach of  reference 6. There must be a difference between Ts and Tf, since otherwise no 
heat exchange can occur between the furnace and the sample holder. Given y, we may write 

w(Tf) = 7(Tf - Ts) . . .  (5) 

where w(Tf) is the heat flow rate into the sample, and may be taken to equal W(Tf) after 
baseline subtraction. For a thin sample undergoing melting (6), 

7(Tf - Ts) = (Csms + Cpmp) :Fs + msAH~ . . . (6), 
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where the subscripts s and p refer to the sample and the sample.pan respectively. If  ~ = 0 
(no phase change), then under steady state conditions, i.e. Ts = Tf, we have 

AT = Tf  - Ts = (Csms + Cpmp):l's/], = "Fs/~ = Tf /a  . . .  (7) 

Consider a sample with a well defined Tm. During a heating scan, equation (7) will be valid 
up to Ts = Tm, where the phase change begins (assuming no superheating). The sample 
will not melt instantaneously when Ts = Tm, but over some time interval At, during which 
Ts remains equal to Tm. Thus Ts = 0, and by integrating equation (6), 

At = (l/or 2 + 2msAH/'{ff) 1/2 - l/tx . . .  ( 8 ) .  

Thus melting will commence at Tf  = Tm + AT, and for Tm + AT < Tf  < Tm + AT + q'fAt, 
the slope of W(Tf) will be constant and equal to T (6, 8). However, this approach becomes 
problematical when Tm varies within the sample, since we can no longer set Ts = 0 in 
equation (6). Hence, we use a numerical approach, which we describe first for the case of a 
single well defined Tm, allowing comparison with the above analytical expressions. Rather 
than impose Ts = Tm during melting explicitly, we assume 

= A(Ts - Tm) . . .  (9), 

subject to the conditions Ts > Tm and ~(t) < 1, where A is a constant, and that once it has 
melted, an element d~, will not resolidify. Equation (9) is merely a device to ensure that 
during melting, Ts remains stable with respect to fluctuations about Tm. Since the initial 
conditions are known, solving equation (6) for Ts with a given Tf  can be carried out 
numerically as described in an earlier report (9). (A is chosen to be sufficiently large to keep 
Ts  fluctuating about Tm during melting, without being so large as to require an 
unreasonably small final step length to obtain a stable solution.) 

Figure 1. Calculated DSC melting 
peaks for a single well-defined 
melt ing point of  174 ~ as a 
function of scanning rate, 
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Figure 1 shows melting peaks derived for a hypothetical material with AH = 180 
jg-l ,T m = 174 ~ Cs = 2.1 jg - lK-1 ,  Cp = 0.9 j g - lK-  1, mp = 28.6 mg, ms = 3 mg and Y 
= 1.1 x 10-2 W K  -1 for different scanning rates. One can verify from Figure 1 that the initial 
slope is equal to Tin each case, that the range of Tf  over which each transition occurs is 
consistent with equation (8) and that the shift of the onset temperature to higher Tf  as :If is 
increased is consistent with equation (7). 

If  Tm is distributed we can replace equation (9) by assuming that the degree of 
conversion in an interval Ts to Ts + fiTs (where fTs  is a discrete interval corresponding to 
the step length in the simulation) is given by 

Ts+~ST s 

f~ = I*m(|  ~ - ~ q b m ( T s  + fTs) + Cm(Ts)) . . .  (10), 
Ts 

assuming that the corresponding sample element has not already melted. This is equivalent 
to applying equation (10) whenever Ts + fTs  > Tsmax, where Tsmax is the maximum 
temperature reached previously in the sample. Since Ts will not necessarily be rising 
monotonically in the simulation, we must also replace the lower limit in the integral by 
Tsmax, so that 

8~ T s  + 8 T s  - 
- 2 TsmaX(r + 8Ts) + Cm(Ts)) 

I(Ts + 8Ts) - - 2 l(Tsmax)(qbl((l(Ts + 8Ts)) + r . . . (11), 

where I(T) can be obtained from equation (1). Equation (6) is then solved as previously. 

R e s u l t s  a n d  D i s c u s s i o n  
By making a reasonable a pr ior i  assumptions about r we can identify conditions 
appropriate to the direct determination of ~1 from the melting peak (assuming no 
recrystaUization or lamellar thickening). For POM (10, 11) Tmo = 200 ~ AH = 180 jg-1, 
Cs = 2.1 jg- lK-1,  6e  = 1.25 x 10 -1 Jm -2, Ah = 3.8x 108 Jm -3, and here, Cp = 0.9 Jg- 
1K-I, mp = 28.6 mg and T= 1.1 x 10 -2 WK -1. Given these values, we expect equation (4) 
to approximate well to the numerical solutions for ms = 3 mg and for scanning rates below 1 
K/rain. In the example to be considered here, we apply equation (4) to a baseline corrected 
melting curve obtained for a 3.1 mg sample at 0.5 K/min, in order to estimate ~m and hence 
~bl. We insert this r into the numerical simulation and predict the evolution of the DSC 
curves as a function of scanning rate for a given ms in regimes where equation (4) is not 
expected to apply. The predictions can then be compared with experimental scans. 

The estimated ~1 is shown in Figure 2. A sum of two skewed normal distributions 
was used to fit this data and to generate the curves shown in Figure 3, where they are 
compared with experimental curves for different :if. The agreement is encouraging, given 
that the only fitted quantity used was ~1. Indeed, as long as ms remained of the order of  3 
mg, and Tc > 150 ~ the predicted peak positions were within 1 K of the measured peak 
positions. For significantly smaller ms, there were problems with noise at very low :if, and 
at larger ms (-> 10 mg) it was difficult to reconcile high and low Tf data with the model, 
presumably owing to thermal gradients in the samples (6). Where good overall agreement 
was obtained, the shapes of  the predicted curves deviated somewhat from the measured 
curves on the low T side of  the peak. The most likely reasons for this were experimental 
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Figure 2. PDF for the lamellar thickness in POM crystallized at 153 ~ derived from a 
melting peak obtained at a scanning rate of 0.5 K/min in a 3 mg sample. The values derived 
from the melting peak are open squares and the solid line is an analytical fit. 
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Figure 3. Heat flow rate divided by the scanning rate for a 3.1 mg sample of POM 
crystallized at 153 ~ (i) experimental DSC melting peaks; (ii) curves computed from Figure 
2. 
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errors, residual recrystallization effects, an inappropriate choice of baseline and constrained 
melting (deviations from equation (1)). That a bimodal distribution function was necessary 
to fit the derived PDF might, for example, be attributable to the existence of two distinct 
lamellar populations. This may in turn be an artefact stemming from recrystallization during 
the scan of lamellae representing the extreme low 1 tail of the initial distribution in 1. If 
recrystallization, or reorganization of some portion of the sample during the scan is an 
important factor, the effect may be suppressed at higher scanning rates, but on the other 
hand at higher Tf the measured curves will begin to deviate from the ideal curve in a way 
which is difficult to account for in terms of a simple correction procedure. 

Conclusions 
We have presented a numerical approach to the effect of melting point distributions on the 
shape of the DSC melting peak in a constant rate scan. As with earlier work on 
non-isothermal crystallization, experimental DSC curves obtained under well characterized 
conditions could be accounted for by the model. This may provide an indication of the 
correct experimental conditions to use when trying to derive distributions in lamellar 
populations from DSC data, or at the very least, an appreciation of the inadequacy of this 
approach. We have chosen to discuss the DSC peaks in terms of the lamellar thickness 
distribution since it should be possibJe to observe this directly by other techniques, and 
indeed the choice of parameters in equation (1) gives consistency between the positions of 
the peak maxima and SAXS and TEM data for the mean lamellar thickness (10). However, 
it should be stressed that the simulated curves depend only on assumptions regarding the 
distribution of Tm in the samples, regardless of the validity of equation (1) or of the values 
used here for Tmo, ~e and z~da (for which there is relatively little consensus in the fiterature). 

It has sometimes been assumed that for finite scanning rates, the measured curve can 
be mapped onto the ideal curve by correcting for temperature lag, and writing Ts = Tf - 
W(Tf)/T by analogy with the curves for a material with a single well-defined Tm (as in 
Figure 1). However it is clear from Figure 3 that such a mapping would have to involve 
more than transformation of the Tf axis alone, if only because the reduced curves are not all 
of the same height. This approach will also tend to lead to unrealistic distortion of the high T 
regions of the peaks. Similarly, the common practice of extrapolating the leading edge of the 
curves to give an onset temperature, which is taken to be the 'true melting point', is 
inappropriate to a material with a distributed Tm. 
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